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ABSTRACT: The study aimed to assess the lifetime attributable risk of breast cancer 

associated with chest computed tomography (CT) exposure in female COVID-19 patients in 

Georgia.     Data was obtained from the National Center for Disease Control and Public Health 

of Georgia (NCDCG), concerning COVID-19 morbidity, hospitalization, and mortality rates 

for the general population during the period 2020–2021. Additionally, information on the age 

distribution of breast cancer incidence among the female population in Georgia from 2015 to 

2023, as well as demographic data from the National Statistical Office of Georgia for the years 

2017 to 2019, was used. Furthermore, data from the First University Clinic in 2020, detailing 

the age and sex distribution of hospitalized patients and survival-mortality indicators, was also 

incorporated into the analysis. Population doses were modeled using the Log-Normal 

distribution with mean 14.16 mGr and median 12.82 mGr for adults and for children 4.58 mGr 

and 4.47 mGr respectively.  Age structure of study population were evaluated using a Bayesian 

approach.  A competing risk methodology was employed to estimate both age-conditional and 

lifetime baseline risks (LBR) of breast cancer development. These estimates were calculated 

using the United States National Cancer Institute’s DevCan software (version 6.9.0). To 

determine the age-conditional and lifetime attributable risk (LAR) of radiogenic breast cancer, 

the methodology outlined in the 2006 report by the Biological Effects of Ionizing Radiation 

(BEIR) VII Committee of the National Academies of Sciences was applied. Risk computations 

were performed using the National Cancer Institute’s RadRAT software and the LARisk R 

package. Monte Carlo simulation techniques were used to estimate uncertainties in risk and 

subjective uncertainties under various assumptions.  
      It was shown that the lifetime attributable risk for Breast cancer in female COVID patients 

in Georgia, related to chest computed tomography   in one year is low - 12.77 [90% UR 3.20 - 

29.90], and is only 0.2% of the lifetime baseline risk (LBR) for breast cancer. However, for the 

population under 40 years of age, this ratio is already 2.2%. Overall, the projected number of 

future breast cancer cases that could be attributed to a chest CT scan performed in one year is 

20.06 [90% UR 5.02 - 46.96] cases.     Given the cumulative effects of ionizing radiation and 

the potential risk of multiple or repeated scanning, further improvements in methods for 

predicting the long-term effects of medical radiation exposure appear necessary.   

    Keywords:  Lifetime attributable breast cancer risk, chest computed tomography  
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INTRODUCTION  

 
      The unique diagnostic efficacy of computed tomography has led to a dramatic increase in the 

frequency of its use - over the past two decades, the number of CT scans in the United States 

increased from 57 million to 90 million [1,2]. Accordingly, the dose burdens associated with 

medical imaging on populations have increased dramatically.   

     To correctly assess the carcinogenic risks  in the range of low doses of radiation and to solve the 

tasks of regulatory control, the National Research Council of the United States developed a 

population-specific, age- and sex-dependent methodology for assessing the carcinogenic risks [3], 

which, with various modifications and for different purposes, is currently widely used by both 

international and national regulatory organizations [4,5,6]. The World Health Organization used 

this methodology to assess and predict the medical consequences of the Fukushima incident [7]. 

Based on this methodology, it was shown in 2007 that approximately 1.5–2% of the total cancer 

incidence in the United States could be associated with computed tomography [8]. The prognostic 

values of the cancer risk associated with CT imaging were estimated according to the scanning 

zones; it has been shown that of the total number of associated with CT scans cancers (78 million 

scans) performed in the United States in 2007 (n=29,000 (95% UR, 15,000-45,000)), the most 

contributed were abdomen and pelvis (n = 14,000) (95% UR, 6,900-25,000) and chest (n = 4,100) 

(95% UR, 1,900-8,100)  [9]. In subsequent years, large-scale epidemiological studies conducted in 

different countries [10-13] quantitatively verified and confirmed theoretical estimates of 

carcinogenic risks associated with CT. Among them, we would like to highlight a study by British 

scientists, where 178,604 patients were retrospectively analyzed, and it was revealed that compared 

with patients who received a dose of less than 5 mGy, the relative risk of leukaemia for patients 

who received a cumulative dose of at least 30 mGy was 3·18 (95% CI 1·46–6·94) and the relative 

risk of brain cancer for patients who received a cumulative dose of 50–74 mGy was 2·82 (1·33–

6·03) [13].   

    The carcinogenic risk associated with medical imaging has received particular attention during 

and after the COVID-19 pandemic, which has been linked to a dramatic increase in chest CT scans 

in infected patients. For example, a multicenter study of 42,028 chest computed tomography scans 

found that total radiation exposure increased by 573% in patients screened in 2019, with the highest 

increase seen in the 20–29 age group (18.6-fold) [14]. Numerous studies, both international and 

national, have examined the radiation doses to the breast and lungs from chest CT scans using 

different protocols in populations and their prognostic values for carcinogenic risk in children, 

adults, and the elderly [15–22]. International expert organizations and regulatory bodies have been 

developing recommendations for minimizing doses and risks in chest CT by “justifying” and 

“optimizing” the procedures, taking into account the epidemiological situation, clinical situation, 

patient category, etc. [23-28].    

      In Georgia, prognostic assessments of the increase in oncological morbidity associated with the 

Covid-pandemic are not found in the literature available to us, while the aforementioned 

information seems to us to be very relevant, both in terms of identifying priority areas of the 

National Cancer Control Strategy in Georgia, In Georgia, prognostic assessments of the increase in 

oncological morbidity associated with the Covid-pandemic are not found in the literature available 

to us, while the aforementioned information seems to us to be very relevant, both in terms of 

identifying priority areas of the National Cancer Control Strategy in Georgia, as well as in terms of 

further refining the theoretical foundations of “justification” – “optimization” in computed 

tomography and regulatory control. In our earlier studies, radiogenic carcinogenic risk projection 

models for breast and lung sites were developed for the Georgian population based on the BEIR 

VII methodology [29]. This paper will present and discuss prognostic estimates of the increase in 

cancer incidence associated with the COVID-19 pandemic in the Georgian female population. 
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MATERIALS AND METHODS  
     Data was obtained from the National Center for Disease Control and Public Health of 

Georgia (NCDCG), concerning COVID-19 morbidity, hospitalization, and mortality rates for 

the general population during the period 2020–2021. Additionally, information on the age 

distribution of breast cancer incidence among the female population in Georgia from 2015 to 

2023, as well as demographic data from the National Statistical Office of Georgia for the years 

2017 to 2019, was used. Furthermore, data from the First University Clinic in 2020, detailing 

the age and sex distribution of hospitalized patients and survival-mortality indicators, was also 

incorporated into the analysis. 

Organ (Breast) radiation dose in chest CT was evaluated from imaging protocols using 

the software CT-Expo V 2.8.  Population doses were modeled using the Log-Normal 

distribution with mean 14.16 mGr and median 12.82 mGr for adults and for children 4.58 mGr 

and 4.47 mGr respectively.  Age structure of study population were evaluated using a Bayesian 

approach.  A competing risk methodology was employed to estimate both age-conditional and 

lifetime baseline risks (LBR) of breast cancer development. These estimates were calculated 

using the United States National Cancer Institute’s DevCan software (version 6.9.0). To 

determine the age-conditional and lifetime attributable risk (LAR) of radiogenic breast cancer, 

the methodology outlined in the 2006 report by the Biological Effects of Ionizing Radiation 

(BEIR) VII Committee of the National Academies of Sciences was applied [3,4]. Risk 

computations were performed using the National Cancer Institute’s RadRAT software and the 

LARisk R package. Monte Carlo simulation techniques were used to estimate uncertainties in 

risk and subjective uncertainties under various assumptions [30,31,32]. 

 

RESULTS 

Before proceeding directly to the discussion of the results, we consider it appropriate to 

emphasize a few important points for further discussion clarification. The modern standard of 

quantitative hazard characteristics (quantitative risk characterization) imposes qualitatively 

new requirements on its content and accuracy. "Health risk assessment" is considered as a 

“process that includes determining (estimating) the health risk associated with the harmful 

effects of an external factors including the identification of attendant uncertainties [33].  The 

concept of “uncertainties” is fundamentally different from the classical “errors”, namely, when 

measuring any quantity, it is necessary to indicate the conditions and circumstances under 

which the measurement is carried out, the full realization of which is in principle impossible, 

since it requires infinitely large amounts of information. Therefore, there always remains an 

area of subjective interpretation (informational uncertainty). This component may be, or may 

not be, of minimal importance, but its indication is considered necessary [32], especially when 

objects of high potential danger are characterized [34,35]. The modern standard considers the 

"uncertainty" of measurement (evaluation) as the sum of two types of uncertainty (Type A and 

Type B). Type A uncertainty - a random statistical error, for the evaluation of which standard 

statistical procedures are used, Type B uncertainty - does not decrease with an increase in the 

number of repeated measurements, and is evaluated by scientific judgment based on all of the 

available information on the possible variability of the measurand (in particular, the results 

obtained in earlier studies, expert assessments, etc.).  

    The main stages of uncertainty assessment according to  Joint Committee for Guides in 

Metrology [30,31,32]  are a) formulation (defining the input and output quantities, developing 

a model relating input and output quantities, on the basis of available knowledge assign 

probability density function (PDF) to each individual input), b) propagation (propagating PDF 

input data through the model to produce PDF output data) and c) summary. 
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Formulation: 

First, it should be noted that, since the present study belongs to uncontrolled and unstructured 

observational studies, only B-type uncertainty is considered. As mentioned above, the study 

aimed to estimate the The population-averaged lifetime attributable risk (LAR) of Breast 

Cancer  ((𝐿𝐴𝑅) ̅_𝑃^𝐵𝑟𝑒𝑎𝑠𝑡)   and the age structure of the increase in cancer incidence ( 

𝑁_𝐷^𝑃 (𝑒)) in the population infected with COVID-19 in Georgia irradiated in 2021 (Output 

quantities).  

Our analysis of these characteristics is based on the BEIR VII methodology modified by the 

US EPA [3,4]. In the BEIR VII approach, the lifetime attributable risk (LAR) for each cancer 

site is the main measure of risk. It represents the lifetime probability of developing cancer in a 

hypothetical (100,000 people) exposed cohort and depends on 1) the demographic age-sex 

structure, 2) the age-sex structure of mortality, and 3) the age-sex structure of the background 

cancer incidence rate. Accordingly, it is specific for each population, including the Georgian 

population. 

In the case of breast cancer, it has the following form: 

〖𝑳𝑨𝑹〗^𝑩𝒓𝒆𝒂𝒔𝒕 (𝑫, 𝒆)
= 𝑫 ∗ 𝜷∫ _(𝒆 + 𝑳)^𝟏𝟎𝟎▒〖𝒆𝒙𝒑 [(𝜸(𝒆 − 𝟐𝟓))/𝟏𝟎] (𝒂/𝟓𝟎)^𝜼 ∗ (𝑺(𝒂))
⁄ (𝑺(𝒆)) ∗ 𝒅𝒂  (𝟏)〗 

Where D is the radiation dose, e is the age at exposure, a is the attained age, and β is the 

coefficient, which reflects the radiosensitivity of the study population ( in this approach, the 

difference in radiosensitivity between populations is ignored). S(a)   is the probability of 

surviving to age a, and L is the minimum latency period of developing cancer. 

The following parameter values are recommended by the US EPA for breast cancer: β 

= 10; γ = -0.50; η= 3.5 for a < 50 and 1,1 for a > 50. These values are universal for all 

populations, the difference is only in the mortality curve S(a). From equation (1), by simple 

transformations, we can obtain   (𝐿𝐴𝑅) ̅_𝑃^𝐵𝑟𝑒𝑎𝑠𝑡    and   𝑁_𝐷^𝑃 (𝑒): 

(𝑳𝑨𝑹) ̅_𝑷^𝑩𝒓𝒆𝒂𝒔𝒕
=  𝑫

/(𝑵_𝑫^𝑷 ) ∫ _𝟎^𝟏𝟎𝟎〖𝑵_𝑫^𝑷 (𝒆) 〖𝑳𝑨𝑹〗^𝑩𝒓𝒆𝒂𝒔𝒕 (𝑫, 𝒆)𝒅𝒆〗 (𝟐)  

                               𝑵_𝑷^𝑩𝒓𝒆𝒂𝒔𝒕 (𝒆, 𝑫) =  𝑫 ∫ 𝑵_𝑫^𝑷(𝒆)[(〖𝑳𝑨𝑹〗
𝟏𝟎𝟎

𝒆

^𝑩𝒓𝒆𝒂𝒔𝒕 (𝑫, 𝒆))/𝟏𝟎𝟎𝟎𝟎𝟎]𝒅𝒆    (𝟑)    

In this equations   𝑁_𝐷^𝑃 (𝑒)  -  the age structure of the irradiated in 2021 COVID-19 patients, 

and  𝑁_𝐷^𝑃 =  ∫ _0^100▒〖𝑁_𝐷^𝑃 (𝑒)𝑑𝑒〗 - is their total number. 

Equation (3) represent the models that relating the output quantities ( (𝐿𝐴𝑅) ̅_𝑃^𝐵𝑟𝑒𝑎𝑠𝑡and 

𝑁_𝑃^𝐵𝑟𝑒𝑎𝑠𝑡 (𝑒, 𝐷)), with input quantities, which in our case are considered:  1) 〖𝐿𝐴𝑅〗
^𝐵𝑟𝑒𝑎𝑠𝑡 (𝐷, 𝑒) - lifetime attributable risk of developing breast cancer in a population irradiated 

with a dose D on the age of e, 2) 𝑁_𝐷^𝑃 (𝑒) - the age structure of the irradiated population and 

3) D - the radiation dose, the value of which depends on a number of factors (the model of the 

CT scanner, the protocols used, the qualifications of the radiologists, the clinical status of the 

patient, etc.), these quantities are random variables, so the next stage of the study was the 

assessment of their probability density functions (PDF). 

We described the PDF of the lifetime risk of developing breast cancer for each age group by 

a normal (Gaussian) distribution: 

                  〖𝑳𝑨𝑹〗^𝑩𝒓𝒆𝒂𝒔𝒕 (𝑫 = 𝟏𝟎𝒎𝑮𝒓, 𝒆 = 𝒆_𝒊) =  𝐍(𝝁𝒆𝒊
, 𝝈𝒆𝒊

)   (𝟒)  
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The mean values (𝝁𝒆𝒊
) and standard deviation (𝝈𝒆𝒊

), for each 𝒆𝒊age group were taken from our 

earlier work [29], where the age-dependent lifetime attributable risk of Breast Cancer (number 

of cancer cases per 100,000 persons) for the Georgian female population irradiated with a dose 

D = 10 mGy was estimated (Figure 1). 

 
Figure 1. Distributions of lifetime attributable risk for female populations 

 of Georgia, the United States, and Korea irradiated at a dose of 10 mGy.  

Whiskers – 95% uncertainty range 

As for the age structure of the exposed population and the probability distribution 

functions of radiation doses, at the moment, the quantitative characteristics of the dose loads 

associated with the COVID-19 pandemic in the population of Georgia, as well as the age 

structure of the exposed population are not available to us, therefore, the assessment of these 

distributions seems possible only on the basis of indirect data and analysis of literature data; 

From this position, we consider it appropriate to first analyze the available information on the 

criteria for categorizing infected patients, the use of CT imaging in different categories of 

patients, imaging protocols and dose selection criteria.   

     The following classifiers proposed by the Fleischner Society provide general ideas about 

these criteria (criteria for “justifying” the diagnostic procedure) [23]. 

Severity of respiratory disease (Mild: no evidence of significant pulmonary dysfunction or 

damage (eg, absence of hypoxemia, no or mild dyspnea), Moderate to severe: evidence of 

significant pulmonary dysfunction or damage (eg, hypoxemia, moderate-to-severe dyspnea) 

Pretest probability (Based on background prevalence of disease as estimated by observed 

transmission patterns. May be further modified by individual’s exposure risk. Subcategorized 

as: Low: sporadic transmission, Medium: clustered transmission, High: community 

transmission). 

Risk factors for disease progression (Present: clinical judgment regarding combination 

of age .65 years and presence of comorbidities (eg, cardiovascular disease, diabetes, chronic 

respiratory disease, hypertension, immune-compromised). 
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Resource constraints (Limited access to personnel, personal protective equipment, 

COVID-19 testing ability (including swabs, reagent, or personnel), hospital beds, and/or 

ventilators with the need to rapidly triage patients).        

In addition to these criteria in terms of “justification” of the procedure, an important factor 

is considered the informative value of computed tomography in terms of diagnosing the disease, 

severity of the course, development of complications and prognosis of lethal outcome. The analysis 

of a number of clinical studies revealed that CT imaging has low specificity - Imaging findings are 

nonspecific and share commonalities with other infections such as influenza, H1N1, (SARS-CoV-

1) and MERS-CoV [38],  along with this, because the risk of infection transmission across imaging 

personnel and other patients, without known or suspected COVID-19 infections, is high [45], the 

United States Center for Disease Control and Prevention (CDC) does not recommend using chest 

radiographs or CT scans as a screening method or first-line diagnostic tool for COVID-19 [24],. 

Similarly, the American College of Radiology (ACR) advises against using CT scans for screening 

or diagnosing COVID-19, stating that such imaging should only be performed in specific cases 

involving hospitalized, symptomatic patients [25]. The Fleischner Society also shared this position. 

According to these recommendations, CT imaging is recommended only for monitoring 

complications of COVID-19 in hospitalized patients and for special case indications [23].   

      Somewhat different principles are observed in the approaches of Chinese specialists [26,27], 

who believe that although RT-PCR is the gold standard for diagnosis, high false negative results, 

which delay patient isolation and treatment initiation, increase the risk of persistent transmission of 

infection and the risk of complications Taking these circumstances into account, Chinese experts 

recommend the use of CT imaging in unconfirmed cases (screening, diagnosis), in cases of high 

Pretest probability and probable false negative test results.     Pediatric cases require a separate 

discussion. Children are more vulnerable than adults to the effects of radiation dose, therefore, chest 

CT in children must only be performed when RT-PCR and immunoassays are not available and/or 

urgent information is needed in children with severe disease. [23].   As for the practice of using 

radiological imaging methods in COVID-19 patients in Georgia, it is regulated by the National 

Guidelines for the Clinical Management of Infection Caused by the Novel Coronavirus (SARS-

CoV-2) (COVID-19) in Adult and Pediatric Patients 

[https://sms.tsmu.edu/ssms/cme/img/ax_co_ga_inf.pdf], according to which chest radiological 

examination (radiography, computed tomography) is recommended for adult hospitalized patients 

with both possible and confirmed COVID-19, although the study protocol is not specified. In 

children with lung damage caused by COVID-19, chest X-ray is considered necessary, and if this 

study is uninformative, computed tomography is recommended. Based on the above, with a high 

degree of certainty, the population of hospitalized COVID-19 patients in Georgia can be considered 

as a irradiated contingent.   

     The National Center for Disease Control and Public Health of Georgia registered 908,908 

infected and 157,047 hospitalized patients of both sexes in 2021, but the literature available to us 

does not provide information on the age distribution of hospitalized patients by sex. Statistical 

reports reflect only the age structure of patients discharged from the clinic without gender details 

(Figure 2), while the age structure of hospitalized patients of different sexes may differ significantly, 

as indicated by the 2020 data of the First University Clinic of Tbilisi State Medical University on 

the sex and age structure of hospitalized patients (Figure 3) 
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Figure 2. Age structure of patients discharged from clinics  

in 2021 across Georgia (NCDCG) 

 

Figure 3. Age and sex structure of patients hospitalized at the First  

University Clinic of Tbilisi State Medical University in 2020 

As can be seen from Figure 2 and Figure 3, the clinic data on the age structure of the female population, 

which is a bimodal distribution with maxima in the age ranges τ=25-35 and τ=60-70 years, qualitatively 

differs from the NCDCG data, which is an asymmetric bell-shaped function with a maximum in the age 

ranges τ=60-70 years. The reason for the identified difference, as we see it, is related to the uncertainties 

of the clinic and NCDCG data, the first of which is related to sampling error, while in relation to NCDC 

it should be associated with the insufficient quality of discretization by age and the averaging of data by 

sex.  A literature review on the age structure of hospitalized patients of different sexes (Figure 4) 

partially coincide with the data of both the clinic and the NCDCG (therefore, they do not have additional 

information value). 
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Figure 4. Age and sex structure of COVID-19 infected patients.  

(German population 2021, patient status unknown) [39] 

     Given the above stated, for the optimal use of the available information on the age and sex structure 

of the exposed population, it was considered appropriate to use the Bayesian approach, which allows 

integrating estimates obtained from various sources, including experiential estimates, which classical, 

frequency-based probability and statistics cannot provide. The approach is based on Bayes theorem of 

conditional probability, which is expressed in the following mathematical formula: 

                                                   𝑷(𝑨|𝑩) =
𝑷(𝑩|𝑨)∙𝑷(𝑨)

𝑷(𝑩)
    .  .    . (𝟒) 

Where: 

P(A|B) – the probability of event A occurring, given event B has occurred (posterior) 

P(B|A) – the probability of event B occurring, given event A has occurred (likelihood) 

P(A) – the probability of event A (prior) 

P(B) – the probability of event B  

In essence, the above theorem specifies the probability P(A) of the realization of some event (A), if 

occurring some event (B), independent of it. This makes it possible to integrate information obtained 

from various sources, including “expert estimation” into the study of a specific problem, which 

significantly reduces the “uncertainties” associated with the estimates and increases the degree of 

“reliability” of the results. All these factors add high flexibility and efficiency to the research, which is 

why the use of this methodology in research is recommended by the U.S. Food and Drug Administration 

[36,37].     

 Concerning our problem, quantity A is the probability (pi) of a patient falling into some  𝝉𝒊  ÷ 𝝉𝒊+𝟏 age 

group. The above-mentioned NCDCG data on the age structure of hospitalized patients (Figure 2) 

provide some, although incomplete, information on the distribution of 𝒑𝒊; therefore,  𝑷𝑵𝑪𝑫𝑪𝑮(𝒑𝒊) can 

be considered as the a posteriori distribution of 𝒑𝒊. 
In the case of known pi, in any random sample of the study cohort, in our case in the cohort of patients 

hospitalized in the first university clinic (𝑵𝒄𝒍𝒊𝒏𝒊𝒄), the probability of a patient falling into the age group 
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𝝉𝒊  ÷ 𝝉𝒊+𝟏,  𝑃(𝒏𝒇
𝒄𝒍𝒊𝒏𝒊𝒄 | 𝒑𝒊, 𝑵𝒄𝒍𝒊𝒏𝒊𝒄)     can be considered as a “likelihood Function”. By integrating these 

two probabilities in (4), we obtain the age structure of COVID-19-infected and hospitalized female 

patients in Georgia: 

              𝑷(𝒑𝒊 |𝒏𝒇
𝒄𝒍𝒊𝒏𝒊𝒄, 𝐧𝐢

𝐍𝐂𝐃𝐂𝐆, 𝐍𝐜𝐥𝐢𝐧𝐢𝐜, 𝑵𝑵𝑪𝑫𝑪𝑮) ∞𝑷(𝒏𝒇
𝒄𝒍𝒊𝒏𝒊𝒄 | 𝒑𝒊, 𝑵𝒄𝒍𝒊𝒏𝒊𝒄) ∗ 𝑷𝑵𝑪𝑫𝑪𝑮(𝒑𝒊)   (𝟓) 

The distribution of 𝒑𝒊 is usually described by a beta-distribution, since the range of definition of this 

function is [0 1], in our variables it will have the following form: 

        𝑷𝑵𝑪𝑫𝑪𝑮(𝒑𝒊) =  [
𝟏

𝑩(𝒏𝒊
𝑵𝑪𝑫𝑪𝑮,   𝑵𝑵𝑪𝑫𝑪)

] ∙ [(𝒑𝒊)(𝒏𝒊
𝑵𝑪𝑫𝑪𝑮−𝟏) ∙ (𝟏 − 𝒑𝒊)(𝑵𝑵𝑪𝑫𝑪𝑮−𝟏)]  .  .  .  (𝟔) 

Here, 𝑵𝑵𝑪𝑫𝑪𝑮 - NCDCG data on the total number of COVID-19 hospitalized patients in 2021 

(157047 patients), 𝒏𝒊
𝑵𝑪𝑫𝑪𝑮 - NCDCG data on the age structure of COVID-19 hospitalized patients in 

2021 (Figure 2). 𝑩(𝒏𝒊
𝑵𝑪𝑫𝑪,   𝑵𝑵𝑪𝑫𝑪)- is the normalization coefficient in the beta distribution. 

In the case of known 𝒑𝒊, the number of patients in the age group (likelihood) 𝝉𝒊  ÷ 𝝉𝒊+𝟏is 

described by the binomial statistical distribution: 

            𝑷(𝒏𝒇
𝒄𝒍𝒊𝒏𝒊𝒄| 𝒑𝒊, 𝑵𝒄𝒍𝒊𝒏𝒊𝒄) =  (

𝑵𝒄𝒍𝒊𝒏𝒊𝒄

𝒑𝒊
) ∙  𝒑𝒊

𝑵𝒄𝒍𝒊𝒏𝒊𝒄
(𝟏 − 𝒑𝒊

𝑵𝒄𝒍𝒊𝒏𝒊𝒄
)

𝑵𝒄𝒍𝒊𝒏𝒊𝒄−𝒏𝒇
𝒄𝒍𝒊𝒏𝒊𝒄

  . . . (𝟕) 

By inserting expressions (6) and (7) into expression (5) and further simplifying, we obtain the expression 

for calculating the posterior distribution: 

   

      𝑷(𝒑𝒊 |𝒏𝒇
𝒄𝒍𝒊𝒏𝒊𝒄, 𝐧𝐢

𝐍𝐂𝐃𝐂𝐆, 𝐍𝐜𝐥𝐢𝐧𝐢𝐜, 𝑵𝑵𝑪𝑫𝑪𝑮) ∞ 𝒑𝒊
(𝒏𝒄𝒍𝒊𝒏𝒊𝒄+𝒏𝑵𝑪𝑫𝑪𝑮−𝟏)

∗  (𝟏 − 𝒑𝒊)(𝑵𝒄𝒍𝒊𝒏𝒊𝒄 −𝒏𝒇
𝒄𝒍𝒊𝒏𝒊𝒄+𝑵𝑵𝑪𝑫𝑪𝑮−𝐧𝐢

𝐍𝐂𝐃𝐂𝐆)      (𝟖) 

Using the expression (8), we obtain the distribution functions of patients 𝒑𝒊, for a separate 𝝉𝒊  ÷  𝝉𝒊+𝟏 

age group of patients (Figure 5), based on which the mean value of the probability, standard deviation, 

and 95% range of uncertainty were calculated for a separate 𝝉𝒊  ÷  𝝉𝒊+𝟏 age group (Figure 6). 

 

 

Figure 5. Prior, posteriori, and likelihood distribution functions of hospitalized  

female COVID-19 patients aged 35-40 years 
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Figure 6. Age distribution of hospitalized women with COVID-19 based on clinic data 

(circles), NCDCG data (triangles), and estimated using a Bayesian approach (rhombuses) 

 

Scanning techniques (protocols) in COVID-19 patients and doses used 

The following general trends emerge regarding recommended CT imaging protocols in COVID-19 

patients [23]: 

in suspected or known COVID-19 pneumonia report a single-phase, non-contrast chest CT without 

the need for contrast injection or post-contrast series. 

In subjects with suspected pulmonary embolism or necrotizing pneumonia from superimposed 

bacterial infection, direct post-contrast arterial phase CT can be performed. 

There is no evidence to support the use of routine multiphase chest CT in patients with COVID-19 

pneumonia. 

A webinar [16,17] was organized by the International Atomic Energy Agency (IAEA) to monitor 

and optimize the dose rates used in medical imaging of COVID-19 patients, with the participation 

of 62 health care sites from 34 countries on 5 continents. Information on the local prevalence of 

COVID-19 infection, diagnostic methods, specific protocols and doses was discussed. It was found 

that than one-half of the health care sites used CT for initial diagnosis of COVID-19 pneumonia 

and three-fourths used CT for assessing disease severity, approximately 20% of participants used 

reduced-dose noncontrast chest CT with radiation dose less than the routine or general chest CT 
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protocol. Approximately 71% of cases used a single examination, 29% used two or more 

examinations, and approximately 20% used 2 or more phased examinations. There were no 

significant differences in the doses used between countries, while the doses used at different 

healthcare providers in the same country varied significantly. There were eightfold variations in 

median CTDIvol and 10-fold variations in median DLP across multiple participating health care 

providers from the same country. The medians of the CTDIvol and DLP distributions used varied 

between 7–11 mGy and 280–439 mGy *cm (absorbed dose of the breast 11.2 – 17.6 mGr*), with a 

pronounced right-skewed asymmetry (mean/median ≈ 1.106). (Organ (Breast) dose in chest CT was 

evaluated from imaging protocols using the software CT-Expo V 2.8)   

      Detailed information on the dose burden associated with CT imaging in COVID patients is 

presented in a systematic review article [18], which analyzed the results of 81 studies in different 

countries (China 66.3%, Italy 7.0%; France -4.7%, Iran-3.5%, the United States2.3%). It was found 

that 23% of CT examinations were used for screening purposes, Regarding the number of CT scans, 

14858 patients, 267 patients, and 447 patients had one, two, and three or more CT examinations, 

respectively. The regimens used varied widely (CTDIvol range 2.3 – 12.6 mGr, (absorbed dose of 

the breast 4 – 20.8 mGr*), it should be noted that, as presented above, there is no significant 

difference in the protocols and doses used between different countries. Similar results are observed 

in other, numerous, international, or national studies [19]. Considering the high dose burden on the 

population during the COVID pandemic, especially young and pediatric patients, several healthcare 

providers have developed low-dose chest CT protocols for COVID-19 subjects. Some studies 

reported an 88–91% reduction in effective dose without compromising the diagnostic image 

information (CTDIvol  1÷3.5 mGr, DLP 20.4 ÷ 112, kVp 80÷100, mA 10÷50, Pitch 1÷1.7, absorbed 

dose of the breast 1.6 – 5.6 mGy*), [17, 22]. The most common technical parameters manipulated 

in low-dose protocols were tube potential and most importantly, tube current (mA).   

    In Georgia, when modeling the dose burden associated with chest CT in COVID-19 patients, we 

primarily proceeded from the fact established by the International Atomic Energy Agency that chest 

CT dose burdens in COVID-infected patients do not differ significantly across countries, while 

There were eightfold variations in median CTDIvol and 10-fold variations in median DLP across 

multiple participating health care providers. Accordingly, in the absence of a complete data of chest 

CT dose burdens in Georgia, it was considered more reliable to extrapolate the dose burdens 

adopted in international practice to the Georgian population. Based on the above, we used the 

asymmetric log-normal distribution to model the Breast absorbed dose during chest CT imaging in 

COVID-infected patients in Georgia: 

                                               𝑷𝑩𝒓𝒆𝒂𝒔𝒕(𝑫) = 𝑳𝒐𝒈𝒏𝒐𝒓𝒎𝒂𝒍(𝝁, 𝜹𝟐) 

For the mean value of the normal distribution (μ) associated with the log-normal distribution, a dose 

of 14.8 mGy was considered optimal, and the value of δ was estimated taking into account the 

condition Mean (DBreast) /Median (DBreast)=1.1 (Figure 7). This approach allows us to assume with 

a high degree of confidence that the proposed model correctly reflects the central tendencies in the 

Breast absorbed dose distributions, while the asymmetry of the distribution qualitatively 

characterizes the share of low-dose protocols and two or more multiple and phased gamma scans 

in the total dose loads. Similarly, were selected dose parameters for pediatric scanning. 
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Figure 7. Breast absorbed dose distributions associated with chest CT  

in the COVID-19 pediatric and adult female patients in Georgia 

b) Propagation:  

Typically, when the output variables are a complex, nonlinear function of the input variables, 

the PDF of which cannot be determined analytically, Monte Carlo methods are used to estimate the 

uncertainty. The principle of MCM is to generate the random numbers by the probability density 

function of input variables, their assignment in the measurement model and calculation probability 

function of output variables. For each iteration of the Monte Carlo process, a set of random values for 

the model parameters are generated.   

 

 
Figure 8. Illustrations of the methodologies. Propagation  

of uncertainties and resulting   distributions 

For Each input quantity X1, X2 and X3 generates 𝑀 random vectors  𝑋1𝑗 , 𝑋2𝑗 𝑎𝑛𝑑 𝑋3𝑗    j = 1, 

. . . , 𝑀 according to the  density of distribution of uncertainties.Thus generated 𝑀 · 3 numbers.  Where 

the value of 𝑀 was chosen from the condition   𝑴 ≥  
𝟏𝟎𝟒

(𝟏−𝒑)
 , 100*p - represents the output variables 

coverage probability. We have coverage probability 90%, so 𝑝 = 0,90 and 𝑀 should be at least 200,000. 

The measurement model j-th element corresponds X1j ,X2j, X3j   random numbers according to the 

uncertainty distribution density. The values Yj, j = 1, . . . , 𝑀 must be sorted in the form of a histogram, 

the bin of which is determined by the required accuracy of the estimates. This ordered model represents 

a discrete distribution function Y, on the basis of which standard statistical indicators are calculated.  
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Figure 9.  presents the Probability of developing radiation induced cancer as a function of age-at-

exposure in a hypothetical population of women exposed to 10 mGr (rhombuses) and modeled (squares) 

doses. Colored area on the graphs correspond to mean ± standard deviation values. 

 

Figure 9. Probability of developing radiation induced cancer (number of additional cases 

per 100,000 exposed persons) as a function of age-at-exposure in a hypothetical population 

of women exposed to 10 mGr (rhombuses) and modeled (squares) doses. Colored area on 

the graphs correspond to mean ± standard deviation values 

As can be seen from the graph, the colored area on the graph, corresponding to the modeled doses 

significantly exceeds the area corresponding to the fixed dose, which is due to the additional 

uncertainties associated with dose modeling.   

    According to our estimates, the projected number of  future breast cancer cases, associated with chest 

CT examination of hospitalized in 2021 female COVID-19 patients is 20.06  [90% UR 5.02 - 46.96] 

cases, moreover, the largest number of cases is observed in the age group 10-35 at the time of exposure 

(Figure 10) 

 

Figure 10. Prognostic values radiation-induced breast cancer cases during lifetime as a function 

of age at exposure, in hospitalized in 2021 female COVID-19 patients in Georgia. Colored area on 

the graph represents to 90% range of uncertainty. 
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Estimated value of the lifetime attributable risk (LAR) for Breast cancer in female COVID patients, 

related to chest computed tomography   in one year is  - 12.77 [90% UR 3.20 - 29.90] cases per 

100,000 persons. In our earlier study [29], it was shown that the lifetime baseline risk of breast 

cancer (LBRgeo) in the Georgian female population is 6200 (UR 6500 – 6900) cases per 100,000 

person, hence the risk associated with Chest CT causes a slight increase in the baseline risk for the 

entire population (≈0,2% ), However, for the female population under 40 years of age, the ratio 

LAR and age-conditional baseline risk is approximately 2.2%, which is not a negligible value, 

considering the annual frequency of CT examinations and the cumulative effect of radiation. 

DISCUSSION 

The biological effects of low dose radiation and the prediction of their medical consequences have 

long been a subject of interest, and not only in relation to medical exposure. The intensification of 

research in this direction was driven by the sharp increase in the frequency of chest CT scans and, 

accordingly, dose loads on populations during the Covid pandemic. Studies have focused on 

estimating the prognostic values of CT doses and their associated carcinogenic risk in different 

countries and populations: In work [17] by searching various online databases: Medline, PubMed, 

Web of Science, Scopus, ResearchGate, medRxiv, bioRxiv and Google scholar, an extensive 

literature review was conducted regarding the protocols used, the dose loads and the associated 

carcinogenic risks in COVID-19 infected patients. Both low-dose, standard, and high-resolution 

protocols were discussed. It was found that the CTDIvol for standard and high-resolution protocols 

varied in the range of 6.8–13 mGy, DLP – in the range of 240–650 (mGy.cm), and the LAR 

estimated by the BEIR VII methodology varied in the range of 15–150 (cases/100,000 persons). 

The CTDIvol for low-dose protocols varied in the range of 1–3.5 mGy, DLP – in the range of 20–

65 (mGy.cm), and the LAR estimated by the BEIR VII methodology varied in the range of 1.5–7 

(cases/100,000 persons). 

In the works of Italian scientists [40] The average CTDIvol, SSDE and DLP were 6.8 mGy, 8.7 

mGy, 239 mGy cm respectively. The average LAR of all solid cancers was 21 cases per 100,000 

patients, with breast and lung cancer localizations at the highest risk in the female population; 

approximately 25 cases per 100,000 patients. Relatively small risks were observed in the 

publication of Iranian researchers - The average LAR for all cancer types was 10.30 ± 6.03 cases 

per 100,000 patients. The average CTDIvol and DLP for females was 3.70 ± 6.63 mGy and 105.50 

± 48.51 mGy.cm respectively. In females, the highest equivalent doses were recorded for the lung 

(4.58 ± 0.60 mSv) and breast (4.06 ± 0.54 mSv). 

The results obtained in our study are consistent with the literature estimates within the margin of 

error and for the population as a whole. the contribution of radiation exposure for 1 year is 

insignificant (0.2% of the LBR of breast cancer), However, for the female population under 40 

accounts for 2.2% of the age-conditional probability of developing cancer. 

As can be seen from the above, the increase in cancer incidence directly associated with the Covid 

pandemic should not be considered a cause for particular concern, but it demonstrates the need to 

predict the dose loads and risks associated with diagnostic radiology in the long-term (10-20 years) 

perspective and the relevance of assessing their share in global trends in cancer incidence in the 

population (permanent increase in incidence, rejuvenation of the contingent) [41-43]. The further 

adaptation of the BEIR VII methodology to the specifics of specific populations is a subject of 

separate discussion. As is known, the cancer risk estimates under BEIR VII are based on a linear 

no-threshold model and data collected from populations of Japan atomic bomb survivors and are 

thus an extrapolation. In addition, the methodology does not take into account possible 

interpopulation differences in radiosensitivity and for interpopulation risk transfer, a mixture of 

EAR and ERR risk models is used in varying proportions for different cancer sites. For breast 

cancer, the 100% EAR model was used, However, in recent years, strong evidence has emerged 

that questions the validity of using the EAR model to estimate breast cancer risk [44], in particular, 
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the incidence of breast cancer in the Japanese population has been steadily increasing. As a result, 

in the Life Span Study (LSS) of Japanese A-bomb Survivors, the ERR model currently predicts 

similar dose-dependent increases across age cohorts, whereas the EAR model predicts different 

dose-dependent increases across age cohorts. Problems with risk estimation have also been 

identified in a large-scale study, which, based on 111.6 million adult patients who underwent CT 

scans, found a plausible dose-dependent increase in cancer risk in exposed patients but highlighted 

the need for further development of the methodology for quantitative LAR estimates [19]. 

 

CONCLUSION 

The lifetime attributable risk for Breast cancer in female COVID-19 patients in Georgia, 

related to chest computed tomography   in one year is low - the LAR is only 0.2% of the LBR for 

breast cancer. However, the highest increase was seen in the 10-35 age group - for the population 

under 40 years old, it is 2.2% of the age-conditional probability of developing cancer. Given the 

cumulative effects of ionizing radiation and the potential risk of multiple or repeated scanning, 

further improvements in methods for predicting the long-term effects of medical radiation exposure 

in the population appear necessary. 
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